May 24, 2013

E-Cat第三者試験結果 PART2:3月のTEST(その4)



Ragone Chart
Upon completion of the test, the E-Cat HT2 was opened, and the innermost cylinder, sealed by caps and containing the powder charges, was extracted.


It was then weighed (1537.6 g) and subsequently cut open in the middle on a lathe.


Before removal of the powder charges, the cylinder was weighed once again (1522.9 g), to compensate for the steel machine shavings lost.


Lastly, the inner powders were extracted by the manufacturer (in separate premises we did not have access to), and the empty cylinder was weighed once again (1522.6 g).


The weight that may be assigned to the powder charges is therefore on the order of 0.3 g; here it shall be conservatively assumed to have value of 1 g, in order to take into account any possible source of error linked to the measurement.

パウダーチャージに割り当てられてもよい重量は、0.3グラムのオーダー上にある ; ここでは、控えめに、1グラムの値を有するとみなさなければならない、測定にリンクしうるエラーのいずれかの可能性のあるソースを考慮に入れるためである。
According to the data available from the PCE-830 analyzer, the overall power consumption of the E-Cat HT2 and the control box combined was 37.58 kWh.

PCE-830アナライザから入手可能なデータによると、E-キャットHT2そして組み合わせたコントロールボックスの全体的な消費電力は37.58 kWhであった。

The associated instantaneous power varied between 910 and 930 W during the test, so it may be averaged at 920±10 W.

関連する瞬時電力は、試験中に910と930 Wの間で変化した、それで、それは、920±10 W で平均化することができる。

In order to determine the power consumption of the E-Cat HT2 alone, one must subtract from this value the contributive factor of the control box power consumption.


As it was not possible to measure the latter while the test on the E-Cat HT2 was in progress, one may refer to the power consumption of the box measured during the dummy test.


This value would in all likelihood be higher in the case of operative E-Cat HT2, due to the electronic circuits controlling the self--sustaining mode: so, as usual, we shall adopt the more conservative parameter.

この値は、すべての可能性で、動作可能なE-キャットHT2の場合において、より高くなるであろう、自己 - 持続モードを制御する電子回路に起因するためである:それてあれば、いつものように、私たちは、より保守的なパラメータを採用しなければならない。
If one assumes that the control box absorbed about 110 W, we can associate the E-Cat HT2 with a consumption of:

もし、コントロールボックスが、約110 Wを吸収していることを前提としていた場合、我々は、E-キャットHT2を次の消費に関連付けることができます:
Instantaneous Power Consumption E-Cat HT2 = (920  110) [W ]= 810 [W] (25)

瞬間的な消費電力 E-キャットHT2

Keeping in mind the fact that this consumption was not constant over time, but may be referred just to 35% of the total test hours, one may calculate the effective powerconsumption of the device as:

次の事実を念頭に置いておく、この消費量は、経時的に一定ではなかった、しかし、総試験時間のちょうど 35%に関係付けられる、次のようにデバイスの実効消費電力を計算することができる:
Effective Power Consumption E-Cat HT2 = (810/100) ・ 35 = 283.5 [W] (26)

Let us further assume an error of 10%, in order to include any possible unknown source.

Errors of this extent are commonly accepted in calorimetric measurements, and in our case they would comprise various sources of uncertainty: those relevant to the consumption measurements of the E-Cat HT2 and the control box, those inherent in the limited range of frequencies upon which the IR cameras operate, and those linked to the calculation of average temperatures.


The energy produced by the E-Cat HT2 during the 116 hours of the test is then:

試験の116時間の間にE-キャットHT2によって生成されるエネルギーは、それでは、次である :
Produced Energy E-Cat HT2 = (816-283.5) ・ 116 = (6.2 ± 0.6) ・ 10^4 [Wh] (27)

生産されたエネルギー E-キャットHT2

From (27) one may gather the parameters necessary to evaluate the position held by the E-Cat HT2 with respects to the Ragone Plot, where specific energy is represented as a function on a logarithmic scale of the specific power of the various energy storage technologies [see Ref. 8].

For power density we have:
(816-283.5)/0.001 = 532500 [W/kg] ~ 5 ・ 10^5 [W/kg] (28)

Thermal energy density is obtained by multiplying (28) by the number of test hours:

532500 ・116 = (6.2 ± 0.6) ・ 10^7 [Wh/kg] ~ 6 ・ 10^7 [Wh/kg] (29)

It is easy to infer from the Ragone chart, another example of which may be seen below in fig. 15 below, that these values place the E-Cat HT2 at about three orders of magnitude beyond any other conventional chemical energy source.



Fig. 15. Another version of the Ragone Plot of Energy Storage [Ref. 8].


In this plot, specific volumetric and gravimetric energy densities are presented for various sources.


The E-CatHT2, out of scale here, lies outside the region occupied by conventional chemical sources.

As it was not possible to inspect the inside of the control box, let us now repeat the last calculations supposing, as a precautionary measure, that all power consumption were to be assigned to the E-Cat HT2.

According to this logic, and assigning to the E-Cat HT2 the maximum value of error given by (24), namely (816 - 16)W = 800 W, one gets:

このロジックによれば、そして、(24)よって与えられる誤差の最大値をE-キャットHT2に代入する、すなわち、(816 - 16)W = 800 W、得られるのは :

Conservative Power Consumption E-Cat HT2 = (920/100) ・ 35 = (322 ± 32) [W] (30)


whereas (28) and (29) become:

一方  (28) と (29) から :

(800-322)/0.001 = (4.7 ± 0.5 ) ・ 10^5 [W/kg] (31)

478000 ・116 = (5.5 ± 0.6) ・ 10^7 [Wh/kg] (32)

The results thus obtained are still amply sufficient to rule out the possibility that the E-Cat HT2 is a conventional source of energy.

Let us associate to this last value of conservative power consumption the worst-case scenario:

(322 + 32) [W] = 354 [W] (33)

Then the values of power density and energy density would then be:

(800-354)/0.001 = (4.4 ± 0.4) ・ 10^5 [W/kg] (34)

446000 ・116 = (5.1 ± 0.5) ・ 10^7 [Wh/kg] (35)

Obviously, not even in this case do we have any substantial change as far as the position occupied by the E-Cat HT2 in the Ragone plot is concerned.

For a further confirmation of the fact that the E-Cat HT2’s performance lies outside the known region of chemical energy densities, one can also calculate the volumetric energy density of the reactor, by referring to the whole volume occupied by the internal cylinder, namely 1.52 ・ π 33 = 233 cm3 = 0.233 l.

E-キャットHT2のパフォーマンスは化学エネルギー密度の既知の領域の外側にあるという事実を、さらに確認のため、反応器の体積エネルギー密度を計算することがまたできる、内側シリンダによって占有されるボリューム全体を参照することによってである、すなわち、1.52・π33 = 233 立方センチメートル = 0.233リットル。

This is the most conservative and “blind” approach possible.

これは、最も保守的で可能な限り "ブラインド"されたアプローチである。
Taking the figures from the worst case, we get a net power of 800-354=446 W; by multiplying this by (3600 ・ 116), we find that 185 Mj where produced.

最悪のケースから数字を取って、我々は、 800-354=446 W の正味電力を得る; (3600・116)によって、これを乗算することにより、我々は、185 Mj がここで生産ことがわかります。

Thus, we have a volumetric energy density of 185/0.233 = (7.93 ± 0.8)102 Mj/Liter, meaning that even by resorting to the most conservative and “worst case scenarios”, where the total volume of the reactor is comprehensive of the 5-mm thick steel cylinder, we see that we are still at least one order of magnitude above the volumetric energy density of any known chemical source [Ref. 8].

このように、我々は、185/0.233 = (7.93 ± 0.8)102 Mj/Liter の体積エネルギー密度を求めた、最も保守的で "最悪のシナリオ"に頼ることによってという意味である、ここで、反応器の全体積は、5mmの厚さの鋼製シリンダで包含され、我々は、任意の公知の化学源の体積エネルギー密度を、少なくとも一桁でいまだに上回るということが解る